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Abstract: Phase matching conditions and second and third order nonlinear
optical coefficients of Sn2P2S6 crystals are reported. The coefficients
for second harmonic generation (SHG) are given at λ = 1542 nm and
1907 nm at room temperature. The largest coefficients at these wave-
lengths are d111 = 17± 1.5pm/V and d111 = 12± 1.5pm/V, respectively.
The third-order subsceptibilities χ(3)

1111 = (17 ± 6) · 10−20m2/V2 and
χ(3)
2222 = (9 ± 3) · 10−20m2/V2 were determined at λ = 1907 nm. All
measurements were performed by the Maker-Fringe technique. Based on
the recently determined refractive indices, we analyze the phase-matching
conditions for second harmonic generation, sum- and difference-frequency
generation and parametric oscillation at room temperature. Phase-matching
curves as a function of wavelength and propagation direction are given.
Experimental phase-matched type I SHG at 1907 nm has been demon-
strated. The results agree very well with the calculations. It is shown that
phase-matched optical parametrical oscillation is possible in the whole
transparency range up to 8µm with an effective nonlinear coefficient
deff ≈ 4pm/V.
© 2005 Optical Society of America
OCIS codes: (160.4330) Nonlinear optical materials; (190.2620) Frequency conversion
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1. Introduction

Tin thiohypodiphosphate (Sn2P2S6) is a wide bandgap semiconductor ferroelectric with very
attractive photorefractive properties [1, 2] and large electro-optical coefficients [3]. In addi-
tion, the wide optical transparency range extending from λ = 0.53 µm to λ = 8 µm [4] holds
promise for optical parametric generation up to infrared wavelengths not accessible with stan-
dard nonlinear optical crystals. This requires the knowledge of the nonlinear optical coefficients
and phase matching conditions. Up to now no coefficient had been determined; the only pub-
lication on nonlinear optics in Sn2P2S6 reports a value for d211 [5], but unfortunately without
specifying the coordinate system being used (in Sn2P2S6 d211 is zero due to symmetry in the
standard coordinate system). In this work we determine or estimate all 10 second-order non-
linear coefficients, as well as the third-order nonlinear optical susceptibilities χ(3)

1111 and χ
(3)
2222

using the Maker-Fringe technique.
In Ref. 6 the refractive indices and the indicatrix rotation of Sn2P2S6 are given for the wave-

length range 550−2300nm at room temperature. The Sellmeier coefficients determined there
allow to describe the refractive indices with an accuracy of 2 ·10−4 in the wavelength interval
indicated. These data allow us to calculate phase-matching conditions for second harmonic gen-
eration (SHG), sum- and difference-frequency generation (SFG and DFG) and optical paramet-
ric oscillation (OPO). Calculated phase-matching conditions are compared with experimental
data at λ = 1907 nm. A configuration for optical parametric oscillators pumped with the fun-
damental wavelength of a Nd:YAG laser, capable of producing radiation from 1 to 8 µm in the
infrared with a high gain (deff ≈ 4pm/V), is described.

2. Optical frequency conversion in Sn2P2S6
For phase-matched parametric interactions among three parallel waves at the frequencies ω1,
ω2, and ω3, where ω3 = ω1 +ω2, the vacuum wavelengths λi of the interacting waves must
satisfy

n3
λ3

=
n1
λ1

+
n2
λ2

(1)
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where the ni are the refractive indices for the waves at frequencies ωi. We use the Cartesian
coordinate system as defined in Ref. 6: unit cell of Dittmar and Schäfer [7], y ‖ b is perpendic-
ular to the mirror plane of the crystal, z ‖ c, the positive direction of the x-axis and the z-axis so
that the piezoelectric coefficients dxxx and dzzz are positive and +y so that xyz is a right-handed
system. The spherical coordinates are defined in the standard way used in physics, with θ the
angle between k and z, and φ the counterclockwise angle from x to the projection of k to the
xy-plane.
Phase-matching conditions may be satisfied in materials with sufficient birefringence either

by rotating the direction of the laser beams with respect to the main axes of the optical indicatrix
(angle tuning), by adjusting the wavelengths of the interacting beams (wavelength tuning), or
by temperature tuning of the birefringence of the crystal.
The advantage of wavelength and temperature tuning is that the interacting beams can travel

collinearly with one of the main axes of the optical indicatrix. In this case, termed noncritical
phase matching, the Poynting vectors of all the interacting waves are parallel to the wave vector:
The interacting beams do not walk off from one another.
For angle tuning, there is critical phase matching: The Poynting vectors are in general not

parallel to the wave vectors, and the interacting beams walk off from one another [8]. The
efficiency of the frequency conversion depends on the interaction length of the waves in the
crystal, which in turn depends on the diameter of the beams and on the walk-off angle. Angle
tuning is advantageous if the interaction length is of the order of the crystal length; the method
can find application for powerful pulsed lasers when the beams do not need to be tightly focused
or a long crystal length is not required.
The induced nonlinear-optical polarization P(ω3) as a function of the electric fields E(ω1,2)

of the fundamental waves is described by

P(ω3)
i = ε0∑

jk
d(ω3,ω1,ω2)
i jk E(ω1)

j E(ω2)
k , (2)

where ε0 is electric constant and di jk are the nonlinear-optical coefficients. For second harmonic
generation (ω1 = ω2), di jk is symmetric in the last two indices, and the contracted notation can
be used.
For general directions of the wave vectors and polarizations in the crystal the projection of

the induced polarization at frequency ω3 along the direction of polarization of the emitted wave
with frequency ω3 can be written as

|P(ω3)| = 2ε0deff|E(ω1)| |E(ω2)| (3)

with
deff =∑

i jk
d(ω3,ω1,ω2)
i jk cos(β (ω3)

i )cos(β (ω1)
j )cos(β (ω2)

k ), (4)

where β (ω)
i is the angle between the electric-field vector of the wave at frequency ω and the

axis i of the Cartesian coordinate system [9]. In a birefringent crystal the electric field direction
in general is not perpendicular to the wave vector. The walk-off angle has to be taken into
account in order to calculate the angles βi [8, 10].
For type I SHG the induced nonlinear polarization is given by:

|P(2ω)| = ε0deff|E(ω)|2, (5)

where deff can again be derived from Eq. (4). The difference between Eqs. (5) and (3) is con-
sistent with a continuous transition to the degenerate case, described by (5), from the sum-
frequency case, described by (3), with two distinguishable fundamental fields.
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The frequency dependence of the nonlinear-optical coefficients can be approximately de-
scribed with Miller’s rule [11]:

d(ω3,ω1,ω2)
i jk = ε0χ

(ω3)
ii χ(ω1)

j j χ(ω2)
kk δi jk , (6)

where δi jk, the Miller indices, are almost independent of the frequency [12] and χii = n2i − 1
are the diagonal elements of the linear subsceptibility.

3. Second harmonic generation

In SHG the frequencies of the incoming beams are equal (ω1 = ω2) and the d tensor becomes
symmetric in its last two indices. This allows to write it in its reduced form [13], which for the
symmetry group m of Sn2P2S6 is

(dip) =

 d11 d12 d13 0 d15 0
0 0 0 d24 0 d26
d31 d32 d33 0 d35 0

 .

If one neglects absorption and the dispersion of the d coefficients (Kleinman symmetry), the
number of independent coefficients drops from 10 to 6, being d15 = d31, d32 = d24, d26 = d12,
and d35 = d13.
The nonlinear optical susceptibilities dip were determined by a standard Maker-Fringe tech-

nique [14, 15] with added suppression of laser beam intensity fluctuations. The fundamental
wavelengths were λ = 1542 nm (first Stokes-line generated in a high pressure Raman cell
filled with methane and pumped by a Surelite Nd:YAG laser at λ = 1064 nm, 7 ns, Q-switched
at 2 Hz) and 1907 nm (same laser with the Raman cell filled with high pressure H2 and Q-
switched at 10 Hz). The samples used were an x-plate and a z-plate, from crystals grown at
Uzhgorod University (Ukraine), oriented by Laue diffraction (precision ±6’), polished to op-
tical quality and poled by heating above TC = 66◦C and slowly cooling in an applied electric
field of 1kV/cm.
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Fig. 1. Maker-Fringe measurement in Sn2P2S6 at λ = 1907nm and fitted theoretical curve.
The sample was a z-plate, which was rotated around its y-axis. The abscissa is the external
angle between the fundamental beam (p-polarized) and the z-axis of the crystal. Detected
was the p-polarized part of the second harmonic signal, yielding a measurement of d11
at the angle ζ = 0◦ and a combination of d11,d13,d15,d31,d33 and d35 for other rotation
angles.
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Table 1. All second order nonlinear optical tensor elements dip of Sn2P2S6 at two wave-
lengths of the fundamental beam. The coefficients are given according to the standard con-
ventions [13] (e. g. d15 = d113 = d131) and a α-quartz reference value of dQ111 = 0.286pm/V
at λ = 1542nm and dQ111 = 0.277pm/V at λ = 1907nm [13].

dip at 1542nm dip at 1907nm
[pm/V] [pm/V]

d11 17 ± 1.5 12 ± 1.5
d12 5.2 ± 0.6 2.0 ± 0.3

d13, d35 8 ± 7 6 ± 5
d15, d31 8 ± 10 -1 ± 4

d24 1.3 ± 0.3 1.8 ± 0.5
d26 2.9 ± 0.3 1.7 ± 0.2
d32 6 ± 3 3 ± 2
d33 4 ± 2 4 ± 3

The d coefficients were found by fitting the Maker-Fringe curves and comparing them to the
ones of a reference crystal of α-quartz. Fig. 1 shows an example of a Maker-Fringe measure-
ment of Sn2P2S6with the corresponding fitted curve. The curve is not symmetrical with respect
to the angle ζ = 0◦, corresponding to beams perpendicular to the crystal, since the indicatrix
is not perpendicular to the Cartesian axes, and therefore the coherence length is minimal at an
angle ζ &= 0◦. Nevertheless the theoretical curve describes the experiments nicely. The modi-
fied Kleinman symmetries δ15 = δ31 and δ35 = δ13 where used during fitting, while the other
Kleinman symmetries where not used, since enough Maker-Fringe curves were available for
those coefficients.
The resulting coefficients dip of Sn2P2S6 are shown in Table 1. Note that due to the contri-

bution of several tensor elements in the Maker-Fringe experiments, some of their values could
be determined only with a relatively low accuracy. The largest value is the diagonal coefficient
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Fig. 2. Temperature dependence of d111 at λ = 1907nm measured during heating until
over the phase transition (a). The solid curve is according to d111 = A(TC−T )1/2 with A=
4.2K−1/2pm/V and TC = 65.7◦C. In (b) the coordinates are chosen so that the dependence
of Fig. (a) is linear in the temperature range just below the phase transition.
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d111 = 17±1.5pm/V at λ = 1542nm and d111 = 12±1.5pm/V at 1907nm, which is higher
than most of the largest coefficients of standard materials for nonlinear optics. Of special in-
terest is also that Sn2P2S6 has very large electro-optical coefficients (rT111 = 161± 8pm/V at
λ = 1064nm [3]), allowing to combine electro-optical with nonlinear-optical effects.
Fig. 2 shows the temperature dependence of the largest d coefficient at λ = 1907nm. At this

wavelength the influence of temperature on the optical properties is negligible with respect to
the change in nonlinear optical properties of second order. The d coefficient is proportional to
the electrical polarization [16], which below TC is given mainly by the acentricity parameter,
i.e. the spontaneous polarization PS. Therefore Fig. 2 represents the temperature dependence
of the spontaneous polarization PS. Close to the phase transition (TC − T < 7◦C) we see the
decrease proportional to the square root of TC−T (Fig. 2(b). The fact that d111 does not vanish
completely above TC is explained by thermal fluctuations in the critical region just above the
second-order phase transition, induced by residual defects [16].

4. Third harmonic generation

The same laser source as in the case of SHG at λ = 1907nm was used for the THG
measurements, which were performed using the Maker-Fringe technique in an evacuated
chamber (10−2 bar). As reference we used an α-quartz crystal and the value χ(3)

1111 = 1.99 ·
10−20m2/V2 [15].
The measurements showed that Sn2P2S6 has very large χ(3) coefficients:

χ(3)
1111 = (17±6) ·10−20m2/V2
χ(3)
2222 = (9±3) ·10−20m2/V2

corresponding to 850 and 470 times χ(3)
1111 of α-quartz and 16 and 8.5 times χ

(3)
2222 of KNbO3

[15].

5. Phase matching

5.1. Second harmonic generation
In Sn2P2S6 phase-matched SHG is possible for a fundamental wavelength in the range between
1680nm and 8µm. The whole range is achievable by type I phase matching (incident photons
have the same polarisation), while type II phase matching (incident photons are of orthogonal
polarisation) is possible for λ > 2324nm. The upper boundary of 8µm is given only by the end
of the transparency range (see Fig. 3), which is due to phonon-phonon interactions [4].
The refractive indices used for calculating the phase-matching conditions are based on exper-

imental data in the range of 550−2300nm [6]. This data is precise (Δn= 2 ·10−4) and fits very
well to a two-oscillator Sellmeier model, which was used to extrapolate the refractive indices at
longer wavelengths. Nevertheless the precision at larger wavelengths cannot be predicted and
could decrease rapidly. For the calculation of deff, we numerically evaluated (4), taking into
account the dispersion of the di jk, given by Eq. (6). Some analytical expressions for deff for a
biaxial crystal can be found in Refs. 9 and 10.
Fig. 4 shows the phase-matching wavelengths versus the beam direction for type I and type II

SHG. The phase-matching loci at the available laser line of λ = 1907nm are drawn by the
white dashed line. Some experimental points measured at this wavelength are also plotted,
demonstrating the accuracy of the calculated phase-matching curve.
In Fig. 5 the regions of internal directions not accessible in crystals cut along the Cartesian

x,y,z-axes are indicated by the grey area. For those directions oblique cuts are necessary in
order to access the wished internal direction from air. In the following figures this region is
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Fig. 3. Absorption constant of Sn2P2S6 at room temperature for non-polarized light propa-
gating along the z-axis. It shows the large transparency range extending from λ = 0.53 µm
to λ = 8 µm. This curve is calculated from measured transmission (by a PE λ9 spectrome-
ter for λ < 1.6µm and a PE Paragon FT-IR spectrometer above that wavelength) and taking
into account multiple Fresnel reflections.
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Fig. 4. Directions of phase matching in Sn2P2S6 for frequency doubling at room tempera-
ture; (a) Type I, (b) Type II. φ and θ are the spherical coordinates of the k vector in the
crystal. Some contour curves are labeled with their corresponding fundamental wavelength
in nanometers. The dashed white line corresponds to the predicted phase-matching for the
laser line at 1907 nm and the white circles are experimental points.
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Fig. 5. The grey region indicates the directions that are not accessible from air in crystals cut
along the Cartesian x,y,z-axes. This figure was calculated for the wavelengths in Fig. 4(a),
but since the dependence on the angles φ and θ is much larger than that on the wavelength,
it can be assumed valid for every configuration shown in this paper.
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Fig. 6. (a) Effective coefficients and (b) internal walk-off angle for type I phase-matched
SHG directions and corresponding wavelengths as in Fig. 4(a).
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either exactly equal or only slightly different than in Fig. 5. All contour plots display the data
for the beam directions k with polar coordinates in the range φ ∈ [0◦,180◦] and θ ∈ [0◦,90◦]
inside the crystal. In order to get the whole definition range φ ∈ [0◦,360◦[ and θ ∈ [0◦,180◦] of
the spherical coordinates, the following symmetries should be applied{

φ → 180◦ − φ
θ → 180◦ − θ

for θ ∈ [90◦,180◦]

and {
φ → 360◦ − φ
θ → θ

for φ ∈ [180◦,360◦[ .

The effective nonlinear optical coefficient is shown in Fig. 6(a) for phase matching of type I.
It ranges between 0 and 5pm/V, with high values of deff > 3pm/V for all fundamental wave-
lengths λ > 1980nm. Type II phase matching has large deff for other wave directions than
type I, in particular deff ! 2pm/V for all φ > 90◦. Compared to other materials, deff of Sn2P2S6
is similar to the ones of LiNbO3 [17] and KTP [18], and larger than in most other standard
materials.
Fig. 6(b) shows the walk-off angle inside the crystal for type I phase matching (PM). For the

largest part of directions it lies between 1◦ and 2◦. The corresponding data for type II PM is
similar. A special point is given where the walk-off angle is zero, which corresponds to non-
critical phase matching. In Sn2P2S6 this can occur only for a beam direction parallel to the
fixed main axis of the indicatrix, i. e. k ‖ y, corresponding to (φ ,θ) = (90◦,90◦) in the figures.
The fundamental wavelength for non-critical PM is λ = 3212.5nm for type I and 4536.5nm
for type II. Again, compared to other standard nonlinear optical materials, the walk-off angles
are similar to the ones of LiNbO3, and larger than in KTP, but smaller than in BBO.
The figures in this section already give an indication of the possibilities for SFG, since the

curves describing phase-matched SFG or OPO collapse in one point with λ1 = λ2 for the direc-
tions for phase-matched SHG with fundamental wavelength λ1. The positions of these points
were given by the curves in Fig. 4.

5.2. Sum-frequency generation and optical parametric oscillation
In this section we discuss the phase-matching possibilities for SFG or parametric oscillation.
The phase-matching condition is given by Eq. (1). In the case of SFG two optical waves at
frequencies ω1 and ω2 interact to produce a wave at the sum frequency ω3 = ω1 +ω2. For
parametric oscillation inside a resonant cavity a strong pump wave at frequency ω3 can produce
an idler wave at frequency ω2 and, through difference frequency generation, a signal wave
at frequency ω1 = ω3−ω2. We consider here only configurations in which all wave vectors
are collinear. There are two different possibilities for achieving phase matching: (I) The two
waves with wavelengths λ1 and λ2 share the same polarization, and the sum frequency wave
λ3 is polarized orthogonal to λ1 and λ2 or (II) the two waves at the wavelengths λ1 and λ2 are
polarized orthogonal to each other. In analogy to SHG we call these two cases type I and type II
SFG.
In OPO for each beam direction a continuous range of pumping wavelengths can be phase-

matched. The phase-matched wavelengths for some propagation directions in the xy-plane are
given in Fig. 7. With type I PM (left) the curves for λ1 and λ2 join smoothly at the wavelength
which produces phase-matched second-harmonic radiation. For type II SFG (right) the phase-
matching lines intersect where phase-matched SHG is possible. In Fig. 7 the non-critical PM
condition (k ‖ y) is shown by a thick line: here with wavelength tuning of λ3 ∈ [1000,1606]nm
it is possible to get all the wavelengths between 1150 and 8000nm.
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oscillation. (a) Type I, (b) Type II. Beam propagation is in the xy-plane (θ = 90◦). λ3 is the
wavelength of the pumping beam, while λ1 and λ2 are the wavelengths of the signal and
the idler. The bold lines correspond to non-critical phase matching.
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Fig. 8. Phase-matched SFG or OPO of type I for λ3 = 1064nm (a) and λ3 = 808nm (b).
The contour lines have constant signal wavelength λ1 and λ2, where 1

λ1
+ 1

λ2
= 1

λ3
. The

contour line labels are λ1 in micrometers. In the outer white region at λ3 = 1064nm no
type I PM is possible. In the inner white region one of the phase-matched wavelengths
diverges.
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The same result can be achieved by angle-tuning with a fixed pumping wavelength: this can
be seen by staying on a vertical line in Fig. 7 and choosing the corresponding value of φ for
the desired wavelengths λ1 or λ2. For the Nd:YAG laser wavelength λ3 = 1064nm this can be
also seen in Fig. 8(a), looking at the bottom horizontal line, where θ = 90◦. At this wavelength
λ1,2 ∈ [1238,7572]nm can be obtained using PM of type I. For the same configuration at the
laser diode wavelength of λ3 = 808nm, λ1 > 2747nm can be accessed (Fig. 8(b)). Type II PM
is also possible, with operating wavelengths similar to type I PM (see Fig. 7(b)). Generally one
can access by type II PM the same signal and idler wavelengths as with type I, but the required
tuning range of λ3 is larger and the conversion efficiency lower.
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Fig. 9. Effective nonlinear optical coefficient (continuous line) and walk-off angle (dashed
line) for phase-matched SFG or OPO with beam propagating in the xy-plane (θ = 90◦).
The dependence of deff and the walk-off angle on the wavelengths of the interacting beams
is weak. The data above is calculated for λ1 = 2400nm.

λ3 = 808nm, TYPE  I
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Fig. 10. Effective nonlinear optical coefficient for type I phase-matched SFG or OPO with
λ3 = 808nm, corresponding to Fig. 8(b). Some contour lines are labeled with their value
in pm/V. In the inner white region one of the phase-matched wavelengths diverges.

For the efficiency of these frequency conversions refer to Fig. 9, where deff and the walk-off
angle are displayed for k in the xy-plane (θ = 90◦). These two parameters depend very little
on the interacting wavelengths, and deff > 3pm/V for type I PM in the range φ = 30◦ . . .150◦,
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while for type II deff is around 2pm/V in the whole range of φ . The largest contributions to deff
around the non-critical PM direction (θ = φ = 90◦) are given by d111 and d133, with these two
contributions having the same sign for type I and different one for type II PM. With φ moving
away from 90◦, the term with d133 becomes dominant for type I, while for type II many terms
roughly balance each other. The efficiency for general beam directions is shown in Fig. 10 for
λ3 = 808nm. It is highest for θ near 90◦, and remains large as long as the internal angle between
k and the xy-plane does not exceed 20−30◦. The same figure at λ3 = 1064nm is very similar.
By pumping at that wavelength, with a crystal cut perpendicularly to (θ = 90◦,φ = 45◦), one
can for example access all wavelengths λ1,2 > 1200 nm by type I phase-matched angle-tuning
and with deff ≈ 4pm/V.

6. Conclusions

The nonlinear optical coefficients of ferroelectric Sn2P2S6 were measured for λ = 1542 nm
and 1907 nm at room temperature. The largest coefficients at these wavelengths are d111 =
17± 1.5pm/V and d111 = 12± 1.5pm/V, respectively. Third order subsceptibilities χ(3)

1111 =
(17± 6) · 10−20m2/V2 and χ(3)

2222 = (9± 3) · 10−20m2/V2 were measured at λ = 1907 nm.
The temperature dependence of d111 confirmed the temperature dependence of the spontaneous
polarization within a temperature range of about 7◦C below the Curie temperature TC ≈ 66◦C.
Based on the new refractive-index data for Sn2P2S6, we have analyzed various nonlinear

optical second-order interactions. Phase-matching configurations for various wavelengths and
beam propagation directions have been studied. The principal polarization directions, walk-
off angles, acceptance angles, and effective nonlinear-optical coefficients have been calculated
numerically for arbitrary beam propagation directions in this biaxial crystal. Phase matching
has been found to be possible in a large variety of configurations. For example type I phase-
matched optical parametric generation from 1.2 to 8µm with deff ≈ 4pm/V is possible using a
Nd:Yag pumping laser and similarly from 2.3 to 8µm using a laser at 808nm.
The advantages of this crystal are its large transparency range extending from 0.53 to 8 µm,

the possibility for phase matching in the whole transparent range, the good nonlinear efficiency
at phase matching, the very large electro-optical coefficients and the absence of hygroscopicity.
The walk-off angle ranges between 0 and 2◦, similarly to LiNbO3 but larger than in KTP.
Damage threshold studies will be required to fully assess the potentiality of this crystal for
high-power near infrared frequency conversion.
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