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Abstract
Quasi-phase matching conditions for second-harmonic generation are analyzed for
whispering-gallery modes. Several domain patterns, particularly those useful for resonators
made of lithium niobate, are compared in terms of their effective nonlinear optical coefficients
and spectral bandwidths. Only if the grating period at the circular surface of the resonator is
monotonically increasing will the effective nonlinearity be independent of small variations of
the properties of the resonator, such as the radius, and the offset between the domain pattern and
the center of the resonator.
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(Some figures in this article are in colour only in the electronic version)

1. Introduction

Quasi-phase matched nonlinear optical effects in lithium
niobate (LiNbO3) crystals are widely used, e.g., for second-
harmonic generation (SHG) [1–3] and optical parametric
oscillation [4–6]. Quasi-phase matching (QPM) compensates
the effect of the dispersion of the refractive index by inverting
the sign of the nonlinear optical susceptibility when the pump
beam and the signal beam get out of phase, which typically
happens on the scale of 10 μm [7].

Whispering-gallery mode (WGM) resonators are round
monolithic resonators, in which the light propagates around
the equator, kept inside the dielectric material by total internal
reflection [8]. In combination with WGM resonators efficient
SHG was demonstrated at mW power levels [3], using
conventional periodically poled lithium niobate (PPLN). In
theory, a radially symmetric domain pattern would be best
adapted to the circular form of the WGM resonator [9], and
could lower the minimal pump power even further by more
than one order of magnitude.

The radial patterns prove difficult to manufacture in
LiNbO3 with the standard lithographic poling method, since
domain walls are not stable if they are not parallel to
a crystallographic symmetry plane. In effect, the only
implementation of a radial pattern in LiNbO3 [10] was
produced by a scanning technique known as ‘calligraphic
poling’ [11]. Furthermore, with perfect radial poling the phase

matching becomes very selective and the temperature of the
resonators has to be controlled up to the order of mK.

It is thus desirable to reach a compromise between the
highest nonlinearity and some tunability. With a chirp (or
another deviation from periodicity) in the domain period ‘seen’
by the circulating light, one obtains phase matching for many
pump frequencies in a given range. This is equivalent to some
tunability in the resonator size or temperature at a fixed pump
frequency. Also, since in WGM resonators the light propagates
in a circle, the simplest domain patterns inherently show a
strong chirp in the domain period.

2. SHG in doubly resonant cavities

For second-harmonic generation in WGMs two conditions
have to be fulfilled: firstly, both the fundamental wave and its
frequency-doubled form have to be modes of the resonator, and
secondly, the phase matching condition has to be satisfied.

2.1. Double resonance

Let us assume that the second-harmonic frequency 2ω

generated is resonant with the cavity. Then in general the
pump frequency ω will be out of resonance, by a detuning
� = |ω − ω̃| from the nearest resonance frequency ω̃. The
second-harmonic oscillation can still build up, if that detuning
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Figure 1. Domain patterns examined for SHG efficiency and
bandwidth. (a) Radial; (b) PPLN; (c) 6-PPLN, i.e. six segments of
PPLN; (d) half-radial; (e) quarter-PPLN; (f) optimized for LiNbO3,
i.e. equidistant on the circumference, as in (a) but with domain bound-
aries along the crystallographic axes. While in (c) the width of the
stripes is constant, in (f) it is adapted for achieving the optimal pattern
on the circumference. All the patterns can have an offset with respect
to the center of the resonator, as illustrated by the example in (d).

is smaller than half of a linewidth [9], i.e. � < γ , and we have
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where the quality factor Q for the fundamental wave relates
to its linewidth via Q = ω/(2γ ). Taking into account only
the fundamental series of resonances (q = 1, m = l), the
average detuning is 〈�〉 = ω/4 = c/(4n R), and 〈�〉/γ
scales inverse proportionally to the radius R for a fixed Q. For
Q = 107 and λp = 1.5 μm, the detuning stays larger than
γ for R < 100 cm. Therefore resonator forms [12] with a
dense mode spectrum should be preferred, where 〈�〉 = γ

can be reached for R ≈ 1 mm [9]. It is also possible to tune
the temperature or another property which shifts the modes
differently for different wavelengths, to achieve mode overlap.

2.2. Phase matching

While phase matching in microscopic WGM resonators can
be achieved by compensating the material dispersion with the
dispersion of the cavity modes [13], for macroscopic WGM
resonators the same techniques are used as with free beams,
the commonest being phase matching using birefringence and
quasi-phase matching. In this paper we will concentrate on
the latter, since it is the best choice for nonlinear optics with
LiNbO3 crystals, where PPLN is widely used.

The two simplest domain patterns (centered radial and
linear patterns shown in figures 1(a) and (b)) have already been
investigated in [9]. Here we analyze several more domain
patterns, and account for among other things a possible shift
of the center of the domain patterns with respect to the center
of the resonator.

For QPM the spontaneous polarization is switched
periodically after a distance lc = π/�k, where lc is the
coherence length and �k = k2ω − 2kω is the mismatch of the

wavevectors. The resulting domain period � = 2lc = 2π/�k
is optimal for light traveling straight through the crystal,
perpendicular to the grating. In this case the effective nonlinear
coefficient with QPM is deff = 2

π
dsc, where dsc is the effective

coefficient of the single crystal, e.g. d33 ≈ 24 pm V−1 for
LiNbO3 at λ = 1550 nm [14].

When the domain pattern seen by the beam is not periodic
in the grating spacing � = 2π/�k, as is, e.g., the case when
the light is traveling in a circle inside a WGM resonator cut out
of PPLN, the coefficient deff with QPM is

deff =
∣
∣
∣
∣
Fpattern

(
2π

�

)∣
∣
∣
∣
dsc (2)

where Fpattern is the Fourier transform of the domain pattern
p(z) = sgn(d(z)) along one round-trip of length L = 2π R:

Fpattern(K ) = 1

L

∫ L

0
p(z)e−iK z dz (3)

evaluated at K = 2π/�. Here d(z) is the nonlinear optical
coefficient at the position z, which changes its sign at each
domain boundary [15, 16].

When phase matching is satisfied the SHG efficiency for
a single path through the crystal increases quadratically with
deffL and linearly with the pump intensity Iω [17]. For WGMs
we calculate the spectrum deff(�) numerically in two ways:
by directly solving equation (3) and by using the fast Fourier
transform (FFT).

During manufacturing of a periodically poled resonator,
some inaccuracies can occur: the domain pattern may have
an offset (x0, y0) with respect to the center of the resonator,
the radius of the resonator may be different from the design
value, and the duty cycle DC of the pattern may deviate from
its optimum value 0.5. Therefore all these parameters can be
varied in the simulation.

2.3. Results and discussion

2.3.1. General observations. Unless otherwise stated,
the simulations shown are calculated with the following
parameters: R = 2 mm, �0 ≈ 18 μm, x0 = y0 = 0,
DC = 0.5, which correspond to typical parameters for SHG at
λ = 1550 nm pump wavelength, and where �0 is the grating
spacing of the domain pattern1. Here �0 is adjusted so that the
ratio between the circumference and �0 is G = 2π R/�0 =
700, which ensures that the number of grating periods for the
radial pattern is a whole one.

For a constant number of gratings G, the spectrum deff(�)

depends only on the ratio �/�0. Therefore in all the figures
the period � that is needed for phase matching is shown
normalized to the actual grating period �0 of the resonator.

The resolution of the FFT calculations in the �-space is
limited to �0/G, independently of the discretization chosen.
This is because the fast Fourier transform gives deff only for an
integer number of grating spacings � in one circumference. At
these points, where � = �0, (1 + 1/G)�0, and so forth, the
value coincides with equation (3). For a higher resolution one
has to calculate the integral (3) directly, as is shown in figure 3.
1 For the patterns with variable grating spacing (the ones in figures 1(a), (d)
and (f)) �0 is defined as the grating spacing at the radius R (see figure 2).
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Figure 2. Illustration of the main parameters used in the simulations.
The poling pattern is shifted by an offset (x0, y0) with respect to the
center of the resonator, �0 is the grating spacing, and R is the radius
of the resonator.

Figure 3. High resolution detail of the amplification spectrum,
calculated for a PPLN pattern (gray) and a quarter-PPLN pattern
(black). The small full points connected by straight lines are
calculated with (3) while the large open squares are computed by
using a FFT. The effective NLO coefficient is shown normalized to
the single-crystal coefficient dsc versus the mismatch �/�0 on the
bottom axis. The upper axis indicates the pump wavelength that
requires the corresponding grating spacing for the case of a LiNbO3

resonator with �0 = 18 μm.

A variation of the duty cycle has the same effect as in free-
beam SHG: deff/deff,DC=0.5 = sin(π DC).

2.3.2. PPLN and quarter-PPLN. With the PPLN pattern
the light ‘sees’ a chirped grating, leading to contributions
at all grating spacings � > �0; see figure 4, where
Fourier spectra of the PPLN and the quarter-PPLN patterns
are compared. The peak values of deff are four times
higher for PPLN, corresponding to the path that is phase
matched being four times longer. However, second-harmonic

Figure 4. Normalized effective NLO coefficient versus the required
grating spacing for a PPLN pattern (gray) and a quarter-PPLN
pattern (black), calculated using a FFT. The FFT provides discrete
points, which are connected in the figure by lines for ease of viewing.
The real values of the effective NLO coefficient between these points
depend on the parameters of the resonator, but they are mostly well
approximated by straight lines (see figure 3). The x-axis is
normalized to the grating spacing �0.

light generated at the four equivalent regions of the PPLN
pattern interferes coherently, possibly leading to an effectively
vanishing nonlinearity at certain �, as seen in figure 4.
Furthermore, in practice it is not possible to control the
interference of equivalent regions in the resonator. Small
variations of the radius of the resonator or an offset of the
grating pattern with respect to the center of the resonator are
inevitable during production. As can be seen in figure 5, a
shift of y0 ≈ 0.0022R ≈ 4 μm of a PPLN pattern is enough
to change the constructive interference into a destructive
one (note that, at the same time, the adjacent destructive
interference in figure 4 is changed into a constructive one).
The quarter-PPLN pattern does not exhibit this behavior: this
is because the grating period increases monotonically along the
circumference, so there is no possibility of interference.

Another feature of the quarter-PPLN structure is that its
large single-crystalline area can be used to tune the resonator
by applying an electric field. When one has an asymmetry
between the light path in +z and −z domains, an applied
electric field can change the mean refractive index of the
resonator via the Pockels effect. With a refractive index
change �n = −n3r E/2 given by the electric field E and
the electro-optic coefficient r in a single-crystalline domain,
the refractive index change averaged over the circumference
of the resonator is �n = �n(1 − fpat), where fpat is the
fraction of the circumference covered by a domain pattern,
i.e. 1/4 for the quarter-PPLN and fpat = 1 for PPLN. The
change of the resonance frequency is linear in �n to a first
approximation [9]. But due to the different values of n and r
at ω and 2ω, the two frequencies will be changed differently:
if without field one has the double resonance with the modes
(qω, lω, mω) and (qω, l2ω, m2ω), then with the quarter-PPLN
pattern (qω, lω, mω) would be resonant with (q2ω, l2ω+1, m2ω)
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Figure 5. Normalized effective NLO coefficient at � = �0 versus a
small shift of the pattern along the y-axis.

at E = 5.2 kV mm−1. This means that with this electric
field difference one can always get double resonance, even in
the case where the resonator has just a single mode per free
spectral range. In practice one has a dense mode spectrum and
a much smaller electric field is sufficient. One can also shift
the refractive index by changing the temperature. This has the
advantage of working with all domain structures. To the above
field there corresponds a temperature change of 8 K according
to the refractive index data in [18] and the thermal expansion
data in [19].

2.3.3. Radial and half-radial. For a perfect radial pattern
we have deff = 2dsc/π ≈ 0.64dsc at �0, while the
effective nonlinearity is zero for � �= �0 [9]. The maximal
nonlinearity deff(�0) is much higher than for the patterns of
section 2.3.2, since the right grating period is present on the
whole circumference. Figure 6 gives the spectrum for the
half-radial pattern, for different offsets y0 of the center of the
domain pattern with respect to the center of the resonator.
For y0 = 0 we get deff = dsc/π as the peak nonlinearity,
while a non-zero offset gives an approximately linear chirp
in the grating period, leading to a top-hat-like spectrum,
centered around the original grating �0. The width is inversely
proportional to d2

eff(�0) since the integral

∫

d2
eff(�) d� = �2

0

L

(
2

π
fpatdsc

)2

(4)

going over the ‘peak’ at �0 is an invariant, valid for all
patterns. In that respect a specific pattern just determines how
the nonlinearity d2

eff(�) is distributed around �0, and the half-
radial pattern with offset distributes it more or less uniformly.
For the full radial pattern with an offset we get the same form,
but with interferences similarly to those in figure 4 for PPLN.

2.3.4. Optimized for LiNbO3. Since the radial patterns prove
difficult to manufacture in LiNbO3, we investigate related
patterns obeying the threefold crystallographic symmetry of

Figure 6. Normalized effective NLO coefficient versus the required
grating spacing for a half-radial pattern, calculated using a FFT. The
center of the domain pattern is shifted by an offset y0 with respect to
the center of the resonator.

Figure 7. Normalized effective NLO coefficient versus the required
grating spacing for a 6-PPLN pattern (black) and a pattern optimized
for LiNbO3 (gray), both with an offset of (x0/R, y0/R) =
(0.02, 0.02).

this material (point group 3m). The easiest approximation
consists of six equivalent pieces of equidistant PPLN, as
drawn in figure 1(c). This pattern, labeled as 6-PPLN, has
a maximal deff three times higher than that of PPLN; see
figure 7. The nonlinearity is effectively concentrated between
�0 and 1.15�0 (figure 8(b)), which is more than enough for
applications. This concentration comes from the fact that in
contrast to the case for the PPLN pattern the maximal period
on the resonator’s circumference is limited to �0/ cos 30◦.
Figure 8 shows the nonlinearity when the pattern is shifted by
less than �0, for larger shifts the result being similar for this
pattern.

An even better approximation would be to vary the grating
spacing such that on the circumference it does coincide with
the radial pattern, yielding the pattern in figure 1(f). Without
offset its spectrum is identical to that of the radial pattern,
deff = 2

π
dsc at �0, and zero for � �= �0, while figure 7 shows
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Figure 8. Normalized effective NLO coefficient versus the grating spacing and the offset in the y-direction for (a) PPLN, (b) 6-PPLN and
(c) a pattern optimized for LiNbO3.

the spectrum for an offset of (x0/R, y0/R) = (0.02, 0.02).
Also with offset the nonlinearity is well concentrated around
�0; see figure 8(c). For large offsets the spectrum spreads out
at approximately half the speed of the radial patterns.

3. Conclusions

The conditions for quasi-phase matching in WGMs were
analyzed in detail, and six poling patterns for LiNbO3

resonators were compared in terms of effective nonlinearity
and design tolerances. The efficiency at low light intensity of
the standard PPLN pattern can be increased by approximately
one order of magnitude by periodically poling along all three
equivalent axes. At high light intensity a smaller nonlinearity
is sufficient for good efficiency and it can be advantageous to
keep single-domain regions, resulting in a smoother spectrum
and the possibility of using an electric field to tune the
resonator.
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